almuhja.com | Update Everything
Answer:
Correct option is D.
Step-by-step explanation:
Given the graph y=sec x
we have to choose the value at which the value of y is 0.
as, [tex]sec x=\frac{1}{cos x}[/tex]
Option A.) [tex]\frac{\pi}{2}[/tex]
[tex]y=sec{\frac{\pi}{2}}=\frac{1}{cos{\pi}{2}}=\frac{1}{0}=\infty[/tex]
Option B.) [tex]\frac{\pi}{2}[/tex]
[tex]y=sec{\frac{\pi}{4}}=\frac{1}{cos{\pi}{4}}=\frac{1}{\frac{1}{\sqrt 2}}=\sqrt2[/tex]
Option C.) [tex]\frac{\pi}{3}[/tex]
[tex]y=sec{\frac{\pi}{3}}=\frac{1}{cos{\pi}{3}}=\frac{1}{\frac{1}{2}}=2[/tex]
No option above gives the value 0
Hence, the correct option is D.
Source: www.gauthmath.com
Source: www.chegg.com
Source: www.gauthmath.com
Source: www.chegg.com
Source: www.gauthmath.com
Source: www.chegg.com
Source: www.chegg.com
Source: www.vrogue.co
Source: www.gauthmath.com
Source: www.chegg.com
Source: www.gauthmath.com
Source: www.chegg.com
Source: www.chegg.com
Source: www.chegg.com
Source: www.chegg.com
Source: www.chegg.com
Source: quizlet.com
Source: www.chegg.com
Source: www.chegg.com
Source: www.chegg.com
Source: www.chegg.com
Source: www.chegg.com
Source: quizlet.com
Source: www.numerade.com
Source: quizlet.com
The graph of y=sec x never intersects the graph of y= $$ ( Quizlet
Source: quizlet.com
The graph of y=sec x never intersects the graph of y= $$ ( Quizlet
Source: quizlet.com
Solved Here is a portion of the graph of y=abx Which of Chegg com
Source: www.chegg.com
Solved: 1 graph y=sec x between x=0 and x=2π label the axis hint solved select of y=secx from memory use chegg com for what numbers 2π ≤ x≤ does 4 to y=sec(x) we can allow is equation below? (x) 2 y=csc y=−3secx choose correct below b look up function y = sec ( ) trigonometric functions mathematics vrogue co sketch basic cycle y=2sec (x π /8) calculus all graphs above have equations with form y=abx when graphing opens on interval one period y=sec(x−π) specify for y=sec( π4) this question based consider −2π≤x≤2π $y= x$ estimate value $ quizlet y=sec(2x 4π) at least y=sec(3x 7π) use blue 5 on grid 2π≤x≤2π graphed y=a bx or find values (a) in figure whichx by translating reflecting never intersects y= $$ here a portion which